In this paper, we develop an efficient multi-scale network to predict action classes in partial videos in an end-to-end manner. Unlike most existing methods with offline feature generation, our method directly takes frames as input and further models motion evolution on two different temporal scales.Therefore, we solve the complexity problems of the two stages of modeling and the problem of insufficient temporal and spatial information of a single scale. Our proposed End-to-End MultiScale Network (E2EMSNet) is composed of two scales which are named segment scale and observed global scale. The segment scale leverages temporal difference over consecutive frames for finer motion patterns by supplying 2D convolutions. For observed global scale, a Long Short-Term Memory (LSTM) is incorporated to capture motion features of observed frames. Our model provides a simple and efficient modeling framework with a small computational cost. Our E2EMSNet is evaluated on three challenging datasets: BIT, HMDB51, and UCF101. The extensive experiments demonstrate the effectiveness of our method for action prediction in videos.
translated by 谷歌翻译
Audio-visual approaches involving visual inputs have laid the foundation for recent progress in speech separation. However, the optimization of the concurrent usage of auditory and visual inputs is still an active research area. Inspired by the cortico-thalamo-cortical circuit, in which the sensory processing mechanisms of different modalities modulate one another via the non-lemniscal sensory thalamus, we propose a novel cortico-thalamo-cortical neural network (CTCNet) for audio-visual speech separation (AVSS). First, the CTCNet learns hierarchical auditory and visual representations in a bottom-up manner in separate auditory and visual subnetworks, mimicking the functions of the auditory and visual cortical areas. Then, inspired by the large number of connections between cortical regions and the thalamus, the model fuses the auditory and visual information in a thalamic subnetwork through top-down connections. Finally, the model transmits this fused information back to the auditory and visual subnetworks, and the above process is repeated several times. The results of experiments on three speech separation benchmark datasets show that CTCNet remarkably outperforms existing AVSS methods with considerablely fewer parameters. These results suggest that mimicking the anatomical connectome of the mammalian brain has great potential for advancing the development of deep neural networks. Project repo is https://github.com/JusperLee/CTCNet.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Recent developments in natural language generation (NLG) using neural language models have brought us closer than ever to the goal of building AI-powered creative writing tools. However, most prior work on human-AI collaboration in the creative writing domain has evaluated new systems with amateur writers, typically in contrived user studies of limited scope. In this work, we commissioned 13 professional, published writers from a diverse set of creative writing backgrounds to craft stories using Wordcraft, a text editor with built-in AI-powered writing assistance tools. Using interviews and participant journals, we discuss the potential of NLG to have significant impact in the creative writing domain--especially with respect to brainstorming, generation of story details, world-building, and research assistance. Experienced writers, more so than amateurs, typically have well-developed systems and methodologies for writing, as well as distinctive voices and target audiences. Our work highlights the challenges in building for these writers; NLG technologies struggle to preserve style and authorial voice, and they lack deep understanding of story contents. In order for AI-powered writing assistants to realize their full potential, it is essential that they take into account the diverse goals and expertise of human writers.
translated by 谷歌翻译
众所周知,很难拥有一个可靠且强大的框架来将多代理深入强化学习算法与实用的多机器人应用联系起来。为了填补这一空白,我们为称为MultiroBolearn1的多机器人系统提出并构建了一个开源框架。该框架构建了统一的模拟和现实应用程序设置。它旨在提供标准的,易于使用的模拟方案,也可以轻松地将其部署到现实世界中的多机器人环境中。此外,该框架为研究人员提供了一个基准系统,以比较不同的强化学习算法的性能。我们使用不同类型的多代理深钢筋学习算法在离散和连续的动作空间中使用不同类型的多代理深钢筋学习算法来证明框架的通用性,可扩展性和能力。
translated by 谷歌翻译
变压器验证引起了机器学习研究和行业的越来越多的关注。它正式验证了变压器对对抗性攻击的鲁棒性,例如用同义词交换单词。但是,由于以中线为中心的计算,变压器验证的性能仍然不令人满意,这与标准神经网络有显着差异。在本文中,我们提出了信仰,这是用于GPU的变压器验证的有效框架。我们首先提出一个语义意识的计算图转换,以识别语义信息,例如变压器验证中的结合计算。我们利用此类语义信息,以在计算图级别启用有效的内核融合。其次,我们提出了一个验证专门的内核手工艺品,以有效地将变压器验证映射到现代GPU。该手工艺者利用了一组GPU硬件支持,以加速通常是内存密集型的验证专业操作。第三,我们提出了一个专家指导的自动调整,以纳入有关GPU后端的专家知识,以促进大型搜索空间探索。广泛的评估表明,Faith在最先进的框架上实现了$ 2.1 \ times $至$ 3.4 \ times $($ 2.6 \ times $)的加速。
translated by 谷歌翻译
尽管基于3D点云表示的基于自我监督的对比度学习模型最近取得了成功,但此类预训练模型的对抗性鲁棒性引起了人们的关注。对抗性对比学习(ACL)被认为是改善预训练模型的鲁棒性的有效方法。相比之下,投影仪被认为是在对比度预处理过程中删除不必要的特征信息的有效组成部分,并且大多数ACL作品还使用对比度损失,与预测的功能表示形式相比损失,在预处理中产生对抗性示例,而“未转移”的功能表征用于发电的对抗性输入。在推理期间。由于投影和“未投影”功能之间的分布差距,其模型受到限制,以获取下游任务的可靠特征表示。我们介绍了一种新方法,通过利用虚拟对抗性损失在对比度学习框架中使用“未重新注射”功能表示,以生成高质量的3D对抗示例,以进行对抗训练。我们介绍了强大的意识损失功能,以对抗自我监督对比度学习框架。此外,我们发现选择具有正常操作员(DON)操作员差异的高差异作为对抗性自学对比度学习的附加输入,可以显着提高预训练模型的对抗性鲁棒性。我们在下游任务上验证我们的方法,包括3D分类和使用多个数据集的3D分割。它在最先进的对抗性学习方法上获得了可比的鲁棒精度。
translated by 谷歌翻译
近年来,破坏预测取得了迅速的进展,尤其是在机器学习(ML)的方法中。理解为什么预测因子使某个预测与未来Tokamak破坏预测指标的预测准确性一样至关重要。大多数破坏预测因素的目的是准确性或跨机能力。但是,如果可以解释中断预测模型,则可以说明为什么某些样品被归类为中断前体。这使我们能够说出传入的破坏类型,并使我们深入了解破坏机制。本文根据J-TEXT上的物理引导特征提取(IDP-PGFE)设计了一种称为可解释的破坏预测变量的破坏预测变量。通过提取物理引导的特征有效地改善了模型的预测性能。需要高性能模型来确保解释结果的有效性。 IDP-PGFE的可解释性研究提供了对J-Text破坏的理解,并且通常与现有的破坏理解一致。 IDP-PGFE已被应用于破坏,因为在J文本上的密度极限实验的密度不断增加。 PGFE的时间演变具有贡献,表明ECRH的应用触发了辐射引起的破坏,从而降低了破坏时的密度。虽然RMP的应用确实提高了J文本中的密度极限。解释性研究指导了RMP不仅会影响MHD不稳定性,而且还会影响辐射轮廓的密度极限破坏的物理机制,从而延迟了密度极限的破坏。
translated by 谷歌翻译
低光视频增强(LLVE)是许多应用程序,例如拍摄和自动驾驶,是一项重要但艰巨的任务。与单图像低光增强不同,大多数LLVE方法都利用相邻帧的时间信息来恢复颜色并删除目标框架的噪声。但是,这些算法基于多帧对齐和增强的框架,在遇到极端低光或快速运动时可能会产生多帧融合工件。在本文中,受到低潜伏期和高动态事件范围的启发,我们使用来自多个帧的合成事件来指导低光视频的增强和恢复。我们的方法包含三个阶段:1)事件合成和增强,2)事件和图像融合,以及3)低光增强。在此框架中,我们分别为第二阶段和第三阶段设计了两个新型模块(事件图像融合变换和事件引导的双分支)。广泛的实验表明,我们的方法在合成数据集和真实LLVE数据集上都优于现有的低光视频或单个图像增强方法。
translated by 谷歌翻译
大多数知识图嵌入技术将实体和谓词视为单独的嵌入矩阵,使用聚合函数来构建输入三重的表示。但是,这些聚集是有损的,即它们没有捕获原始三元组的语义,例如谓词中包含的信息。为了消除这些缺点,当前方法从头开始学习三重嵌入,而无需利用预训练模型的实体和谓词嵌入。在本文中,我们通过从预训练的知识图嵌入中创建弱监督信号来设计一种新型的微调方法来学习三重嵌入。我们开发了一种从知识图中自动采样三联的方法,并从预训练的嵌入模型中估算了它们的成对相似性。然后将这些成对的相似性得分馈送到类似暹罗的神经结构中,以微调三重表示。我们在两个广泛研究的知识图上评估了所提出的方法,并在三重分类和三重聚类任务上显示出对其他最先进的三重嵌入方法的一致改进。
translated by 谷歌翻译